
Vol:.(1234567890)

Electrochemical Energy Reviews (2019) 2:518–538
https://doi.org/10.1007/s41918-019-00052-4

1 3

REVIEW ARTICLE

Recent Progresses in Oxygen Reduction Reaction Electrocatalysts 
for Electrochemical Energy Applications

Yahao Li1,3 · Qingyu Li1 · Hongqiang Wang1 · Lei Zhang2,4 · David P. Wilkinson5 · Jiujun Zhang1,2,5

Received: 2 March 2019 / Revised: 29 June 2019 / Accepted: 9 September 2019 / Published online: 1 October 2019 
© The Author(s) 2019

Abstract
Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for 
electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction 
(ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR 
for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been 
intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, 
cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent 
progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and 
metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome 
these challenges are proposed to facilitate further research and development toward practical application.

Keywords Oxygen reduction reaction · Electrocatalyst · Precious metal catalyst · Non-precious metal catalyst · Single-atom 
catalyst · Metal-free catalyst

1 Introduction

Fossil fuels, including crude oil, coal and natural gas, as 
well as nuclear materials are major sources of energy that 
currently cover the majority of global energy demands [1]. 
However, fossil fuel reserves are limited and are expected 
to be depleted within a couple of centuries [1]. In addition, 

the combustion of fossil fuels is the main source of green-
house gases (GHG), especially  CO2, which is believed to be 
the culprit for global warming [2]. And as a major source 
of demand for energy, transportation currently accounts 
for 30% of global energy consumption and 23% of GHG 
emission [3, 4]. Based on this, it is of great importance to 
find green alternatives to combustion engines and reduce 
GHG emissions. Here, proton exchange membrane (PEM) 
fuel cells and metal–air batteries stand out among various 
alternative techniques [5, 6] and are both GHG emission 
free [5–8]. For PEM fuel cells, hydrogen is used as the fuel 
and oxygen from air as the oxidant to produce power with 
only water as the end product whereas for metal–air batter-
ies, metals such as Li, Zn, Mg, Al, etc., can be used the fuel 
electrode and oxygen (air) as the cathode oxidant to produce 
power. And although different “fuels” are required at the 
anodes of PEM fuel cells and metal–air batteries, the cath-
ode reaction is always the oxygen reduction reaction (ORR), 
which in most cases is believed to be the rate-determining 
step of the overall electrochemical process due to its slug-
gish kinetics, thus leading to insufficient performances in 
corresponding devices [9–12]. To overcome this, various 
cathode electrocatalysts with high activity towards ORR are 
normally used in which precious metal catalysts, especially 
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Pt-based catalysts, are considered to be the most active 
[13–15]. However, these precious metal catalysts commonly 
suffer from drawbacks such as high prices and less tolerance 
to contaminants [16, 17]. Therefore, researchers are devoting 
great attention to the development of non-precious metal 
catalysts (NPMC) to replace precious metals in which Fe, 
Co, Ni, Mg and other metals are being explored to fabricate 
catalysts with remarkable ORR activity [10, 18–24]. In addi-
tion, researchers are also exploring metal-free catalysts that 
have shown promising ORR activities [16, 17, 25–33]. And 
based on all of this, this review will present the progresses, 
challenges and perspectives in the development of ORR 
electrocatalysts. Furthermore, possible research directions 
are proposed to facilitate future research and development.

2  Oxygen Reduction Reaction

In general, ORR occurs mainly through two pathways in 
which one is the 4-electron reduction of  O2 to  H2O in acidic 
media or  OH− in basic media whereas the other is the 2-elec-
tron reduction of  O2 to  H2O2 in acidic media or  HO2

− in 
basic media. The thermodynamic reaction potentials for each 
pathway are listed in Table 1.

As for kinetic ORR sequences, these are more complex 
and involve many intermediate and elementary steps (elec-
tron transfer or chemical reactions) that are dependent on 
the nature of the catalyst and electrolyte [34] in which in 
alkaline electrolytes, ORR can occur through associative or 
dissociative mechanisms [30, 35–37]. For the associative 
mechanism in alkaline media, ORR begins with the associa-
tive adsorption of  O2 and the overall reaction mechanism 
can be summarized as follows (*represents a surface free 
site on the catalyst):

Here, four electrons in total are accepted by  O2, result-
ing in 4  OH− ions being produced to complete a 4-electron 
ORR. Alternatively, if  OOH(ads) accepts an electron, des-
orption may occur in which peroxide ions are formed and 
leave the catalytic site, resulting in the termination of the 
reaction chain and 2-electron ORR as represented in the 
following equation:

As for the dissociative mechanism in alkaline media, 
this reaction is simpler in which instead of going through 
Reactions (1) to (3),  O2 adsorbed on free sites directly 
dissociates into two  O(ads), also consuming four electrons 
and completing a 4-electron ORR as represented in the 
following equations:

As for acidic electrolytes, a similar reaction mechanism 
occurs in which in the presence of protons, the reaction 
route will change to:

Here, four protons and four electrons are consumed and 
 O2 is completely reduced into two  H2O. In addition, Reac-
tion (6) will also change to Reaction (6′):

And based on these mechanisms, it is clear that the 
improvement of kinetics and the reduction in overpoten-
tials for ORR in both acidic and alkaline media involve 
avoiding the production of  H2O2 or  HO2

− for more efficient 
4-electron pathways. And as mentioned above, suitable 
electrocatalysts can effectively influence reaction mecha-
nisms and guide ORR through more efficient pathways.
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Table 1  ORR pathways on electrodes in aqueous electrolytes [34]
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potential (V vs. 
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3  Electrocatalysts for Oxygen Reduction 
Reactions

3.1  Metal catalysts for Oxygen Reduction Reactions

3.1.1  Precious Metal Catalysts

In general, precious metal catalysts, especially Pt-based 
catalysts, possess high stability and superior electrocata-
lytic activity in which in many studies, Pt is often chosen as 
the reference or baseline catalyst in the exploration of other 
catalysts such as NPMCs [38]. And although Pt nanoparti-
cles supported by high-surface-area carbon remain the most 
successfully commercialized ORR electrocatalysts, Pt is rare 
and expensive, which limits large-scale application. Over-
all, the goal of catalyst development, including for Pt and 
other precious metal-based catalysts, as summarized by Wei 
et al. [39] is to increase the total number and/or the intrinsic 
activity of active sites (Fig. 1). To achieve this, researchers 
have developed many Pt-based catalysts with tunable sizes 
and morphologies [40–44], including core–shell structured 
[45–49] and alloy catalysts [50–55]. Here, core–shell struc-
tured and alloy catalysts are promising because they can not 
only reduce Pt loading by incorporating other metal(s) to 
allow for higher mass activity (A mgPt

−1), but can also sur-
pass the intrinsic activity of Pt catalysts through interactions 
between Pt and metal counterparts or core metals that can 
affect electronic structures [43, 56, 57].

Pt Alloy Catalysts Pt alloys with other metals possess 
superior ORR activities as first discovered three decades ago 
[58] in which the origin of this higher ORR activity is based 
on the modification of the electronic structure of Pt, which 
can affect the adsorption strength of oxygen-containing spe-
cies on active sites [49, 51, 59–63]. Here, a volcano relation-
ship was demonstrated by Nørskov et al. [64] in which the 
adsorption energy should be neither too small nor too big to 

balance reactant adsorption ability and resultant desorption 
ability. Similar relationships have also been established for 
Pt alloying with different metals and the tuning of metal 
ratios (Fig. 2) [50, 53, 65]. In addition, Pt-skin-like surfaces 
can form during initial treatment and potential cycling to 
provide more active sites and higher ORR activities to cata-
lysts [58]. Despite these results however, Pt alloyed with 
transition metals also tends to suffer from leaching or dis-
solution, which will lead to insufficient stability [49, 56] and 
undermine the advantages of Pt alloy catalysts.

Core–shell Structured Catalysts Pt bimetallic catalysts 
with core–shell structures are a special type of Pt alloy cata-
lyst in which Pt shells can protect transition metal cores. 
Here, not only can the dissolution of transition metal cores 
be mitigated, the interactions between Pt and core metal(s) 
are also strong, thus inheriting the advantages of Pt alloy 
catalysts [48, 56, 57]. In addition, because only small 
amounts of surface Pt is utilized during catalytic reactions 
in these core–shell structures, Pt utilization is maximized, 
which fulfills the principles of atom economy [66, 67]. For 
example, Strasser et al. [68] reported that dealloyed Pt–Cu 
core–shell structures can possess extraordinary ORR activ-
ity. Here, these researchers reported that strain can form in 
Pt-enriched shells supported on Cu cores with a smaller lat-
tice parameter and that the compressive strain in the shell 
can tune the electronic band structure of Pt and weaken the 
chemisorption of reactive intermediates, thus resulting in 
increased ORR activity [37].

Researchers have also observed that Pt alloy catalysts 
with much higher oxide coverage and faster oxide growth 

Fig. 1  Different development strategies for metal catalysts. Reprint 
with permission from [38]

Fig. 2  Volcano plot of ORR kinetic current density (jk) as a function 
of calculated oxygen adsorption energy (∆E0) for Pt alloy electrocata-
lysts in acidic electrolytes. Reprinted with permission from [65]
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than pure Pt can display excellent ORR activity [69, 70], 
which conflicts with the conventional knowledge that pure 
metal surfaces should be more catalytic active than corre-
sponding metal oxide surfaces, indicating that more complex 
mechanisms are involved for Pt alloy electrocatalysts. There-
fore, further investigation into the effects of composition, 
structure, size and shape of Pt alloys on ORR activity is 
essential to the design and fabrication of more efficient and 
economically practical catalysts [38].

3.1.2  Non‑precious Metal Catalysts

NPMCs have been intensively investigated due to the possi-
bility of eliminating the usage of Pt or other precious metals 
in which the unique structure of NPMCs (oxides, nitrides, 
phosphides, etc.) can provide vast possibilities for the tun-
ing of catalyst activity, selectivity, and durability [71, 72].

Transition Metal Oxides Transition metal oxides, includ-
ing single metal oxides and mixed metal oxides, are rep-
resentative ORR electrocatalysts that are earth abundant, 
inexpensive, easy to prepare, environmentally benign and 
more importantly, possess comparable catalytic activities to 
Pt-based catalysts.

Transition metals of group VIIB and VIII elements such 
as Mn possess multiple valence states and various oxides 
such as MnO,  Mn3O4,  Mn2O3 and  MnO2, in which the 
valence states of Mn including Mn(II), Mn(III) and Mn(IV), 
respectively [38]. Here, the electrocatalyst application of 
these manganese oxides  (MnOx) have been intensively inves-
tigated after the ORR activity of  MnO2 was first reported in 
the early 1970s [73–78]. As a result, the chemical compo-
sition, texture, morphology, oxidation state and crystalline 
structure of  MnOx have been examined in electrocatalytic 
applications. For example, the crystallographic structures 
of  MnO2 were reported to possess catalytic activities in 
alkaline electrolytes following the order: α-MnO2 > amor-
phous  MnO2 > β-MnO2 > γ-MnO2 [79, 80] in which these 
activities were believed to be related to their intrinsic tunnel 
size and electrical conductivity. Delmondo et al. [81] also 
reported the thermal evolution of  MnxOy nanofibers with 
changed ORR activity in which at a lower temperature zone 
(475–575 °C),  MnxOy existed as a single phase of  Mn3O4 
whereas a single phase of  Mn2O3 was found at a higher tem-
perature zone (above 725 °C). And although both phases 
exhibited good ORR activity, the mixture of these two 
phases at temperatures between 575 and 625 °C provided 
poor activity and selectivity. Researchers have also reported 
that  MnIII/MnIV species were the intermediates during ORR 
and that the doping of low-valent metal elements into  MnOx 
can enhance overall ORR activity due to the ability of these 
elements to stabilize  MnIII/MnIV species [82]. Alternatively, 
Risch et al. [83] also studied the redox process of  MnOx dur-
ing ORR using in situ soft X-ray absorption spectroscopy 

and reported that  MnIII/MnII instead of  MnIII/MnIV species 
were the species relevant to ORR and that the  MnIII/MnIV 
pair was believed to be more related the oxygen evolution 
reaction (OER). Furthermore, researchers have also reported 
that aside from valance status, the micro-morphology of 
manganese oxides can also affect electrocatalytic activity 
in which suitable morphologies such as nanorods [84, 85], 
nanowires [86, 87] and nanospheres [88] can profoundly 
enhance ORR activity.

Cobalt oxides also possess high electrocatalytic activities 
and tunable compositions and are another type of promis-
ing candidates to catalyze ORR [73]. The most commonly 
investigated cobalt oxide is  Co3O4 in which  Co2+ and  Co3+ 
ions coexist in the crystal structure. And although the exact 
catalytic mechanism for  Co3O4 active sites remains unclear, 
different assumptions have been made. For example, Xu 
et al. [89] reported that  Co3O4 nanorods with more exposed 
surface  Co3+ ions can lead to higher catalytic ORR activities 
that can surpass the activity of Pd catalysts, suggesting that 
surface  Co3+ ions on  Co3O4 electrocatalysts play a deter-
minant role in ORR performance. Alternatively, He et al. 
[90] believed that increased ORR activity is associated with 
higher amounts of  Co2+ whereas higher amounts of  Co3+ 
will lead to better OER activity in which these researchers 
suggested that  Co3+ active sites can enhance the adsorption 
of  OH− anions, which can act as reactants for OER. These 
researchers also suggested that more  Co2+ active sites can 
aid in the adsorption of  O2 and subsequent electron transfer 
to generate  OH− through ORR. Osgood et al. [91] also sug-
gested that the increased availability and faster frequency of 
these reactants occurring at active sites due to the respective 
Co oxidation states can enhance reaction rates. And because 
ORR is a surface-structure-sensitive reaction and Co cations 
can play an essential role, the tailoring of  Co3O4 morpholo-
gies to provide more active sites is an effective strategy to 
enhance ORR activity.

Intrinsically, single metal oxides possess poor electric 
conductivity; therefore, supporting them on conductive 
substrates such as carbon materials is necessary to enhance 
catalytic performance [80, 92–94]. Moreover, the interaction 
between metal oxides and substrates can affect ORR activity 
[92, 93, 95, 96]. For example, Savinova et al. [92] reported 
that in addition to being a conductive support to enhance 
the conductivity of  MnOx and providing additional active 
sites, carbon support materials can actually compete with 
oxides during  O2 adsorption. And based on this observa-
tion, these researchers suggested that carbon materials with 
high surface areas should be avoided to relieve this competi-
tion. Alternatively, Tong et al. [93] coupled  CoOx to B,N-
decorated graphene  (CoOx/BNG) and reported that Co–N–C 
species formed and acted as a bridge between  CoOx nano-
particles and BNG, resulting in excellent ORR activities, 
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which these researchers ascribed to the interactions between 
 CoOx and BNG.

Mixed-metal (bi-metal, tri-metal or more) oxides have 
also been extensively investigated to catalyze ORR because 
they naturally possess metals with different valence states. 
And of these mixed-metal oxides, spinel-type and perovs-
kite-type oxides are the most investigated [73].

(a) Spinel-type oxides [97–102]: Spinel-type oxides are a 
group of oxides with the formula:  A2+B3

2
+O4

2−, in which A is 
a divalent metal ion  (Mg2+,  Fe2+,  Mn2+,  Ni2+, etc.) and B is a 
trivalent metal ion  (Al3+,  Fe3+,  Co3+,  Cr3+, etc.). Typical spi-
nel structures (Fig. 3a) are usually cubic close-packed oxides 
with two tetrahedral and four octahedral sites per formula 
unit in which if  B3+ ions occupy octahedral holes and  A2+ 
ions occupy tetrahedral holes; the structure is called a “nor-
mal spinel.” Alternatively, if  B3+ ions occupy tetrahedral 
holes and half of the octahedral holes and  A2+ ions occupy 
the rest of the octahedral holes, the structure is called an 
“inverse spinel.” And in some occasions, these two types of 
structures can coexist in one material with the corresponding 
structure called a “mixed spinel” [103]. Spinel oxides can 
exhibit good ORR activity in alkaline electrolytes [97–102, 
104] and Mn and Co are the two most investigated metal 
species because both possess multiple valence states and 
can provide various possibilities [23, 75, 101, 102, 105]. For 
example, Zhou et al. [102] explored the effects of Mn–Co 
compositional change on ORR activity by studying the cata-
lytic properties of a series of edge sharing  [CoxMn1−xO6] 
octahedra units and reported that the ORR activity of spi-
nels mainly originate from octahedral units. Here, these 
researchers proposed that the super-exchange interaction 
(Mn–O–Co) between mixed  [MnO6]–[CoO6] octahedra 
through the oxygen “edge” in spinel lattices can dominate 
the electronic behavior of octahedral metal cations.

Overall, spinel oxides are normally conductors or sem-
iconductors due to their mixed valence states in which 
electronic transfer can occur with relatively low activa-
tion energies between the cations of different valence 
states through hopping, allowing spinel oxides to not only 

be used as catalysts but also as electrode materials [73], 
which can resolve issues faced by single metal oxides.

(b) Perovskite-type oxides: Perovskites are oxides with 
a general formula of  ABO3 and have been extensively 
investigated due to their bifunctional catalytic ability in 
alkaline electrolytes [73, 107–110]. The basic structure of 
perovskite-type oxides involves an orthorhombic structure 
with A-site cations being coordinated to 12 oxygen ions to 
form a cuboctahedral coordination environment and B-site 
cations being coordinated to six oxygen ions to form an 
octahedral geometry (Fig. 3b) [106], allowing for high sta-
bility at high temperatures. In addition, ~ 90% of natural 
metallic elements are known to be stable in a perovskite-
type oxide structure [108] in which perovskites can be 
partially substituted to form materials with the formula 
 A1−xAx′B1−yBy′O3. The properties of these perovskites can 
also largely differ from origin oxides, and therefore, the 
structural variation of perovskite-type oxides makes them 
promising for catalytic applications.

La-based perovskite oxides with La ions located in 
A-sites have been extensively investigated and applied 
in various applications [111–116], particularly in the 
catalysis of ORR [109, 110, 116]. For example, Sunarso 
et al. [109] investigated the ORR activities of La-based 
perovskite oxides in alkaline media and reported that the 
increasing order of ORR activity for La-based perovs-
kite oxides with different transition metal ions in B-sites 
was:  LaCrO3 < LaFeO3 < LaNiO3 < LaMnO3 < LaCoO3. 
In addition, these researchers also reported that if half 
of the B-site metals were replaced with Ni, the order of 
ORR activity changes to:   LaN iO 3   <  LaN i0 .5 Fe0.5O3 < La
Ni0.5Co0.5O3 < LaNi0.5Cr0.5O3 < LaNi0.5Mn0.5O3 and that 
the ORR onset potentials of the substituted oxides were 
improved, suggesting the beneficial effects of substation 
by two transition metal cations.

Transition Metal Nitrides The significant electronegativ-
ity difference between metals and N can allow for charge 
delocalization in nitrides, which can create basic or acidic 
sites with good catalytic activity towards isomerization, 

Fig. 3  a Typical spinel crystal 
structure. b Structure of 
perovskite-type oxide emphasiz-
ing the coordination number of 
the A cation at the body center. 
Reprinted with permission from 
[97, 106]
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dehydrogenation, hydrogenation, etc. [73]. The first nitride 
to be used to catalyze ORR in 1963 was TiN, which was 
found to possess good ORR activity and excellent electronic 
conductivity in alkaline electrolytes [117]. Because of this, 
transition metal nitride catalysts have been intensively 
explored for ORR catalysis. For example,  Mn4N was found 
to possess high ORR activity in alkaline electrolytes and 
provide a direct 4-electron ORR mechanism [118]. In addi-
tion, molybdenum nitrides have also been investigated as 
ORR electrocatalysts [119–121]. Overall, the research into 
metal nitrides focuses more on N-doped carbon-supported 
metal nitride composites, not only because these N-doped 
carbon materials can provide extra ORR activity through 
the synergistic effects between supports and nitrides, but 
also because of the possible formation of metal–Nx moie-
ties during synthesis, which can show high catalytic activity 
towards ORR [122–126].

As for metal–Nx moieties, metal and N can both contrib-
ute to catalytic activity; however, it is difficult to determine 
individual contribution. To address this, Wang et al. [127] 
recently reported the successful exclusion of Fe–Nx moie-
ties in Fe–N–C systems  (Fe2N and N-doped graphene) in 
which these researchers used DFT calculations to determine 
that ε-FexN ( x ⩽ 2.1 ) was more active than ζ-Fe2N in the 
catalysis of ORR.

Researchers have also reported that  Cu3N can be prepared 
through a one-phase process in which the crystal size of the 
product can be easily tuned using different primary amines 
as capping agents. Here, the resulting nanocrystal structures 
can lead to improved ORR activities in alkaline fuel cells 
[128] and this enhanced activity can be partially attrib-
uted to the nanostructure. This is because nanostructured 
materials possess additional advantages for electrocatalysis 
due to the favorable access of electrolytes to reactive sites, 
thus promoting the mass transfer of reactant gases and ions 
conducting in the catalyst layer [73, 129, 130]. For exam-
ple, Chen et al. [131] demonstrated that TiN nanoparticles 
can be directly synthesized on carbon black supports using 
an mpg–C3N4–carbon black composite as a template and 
resulted in strong contact between the TiN and carbon sup-
port in the resulting catalyst and high ORR activity in a 
corresponding acidic fuel cell.

Transition Metal Phosphides Recently, the electrocata-
lytic performance of transition metal phosphides (TMPs) 
have also been explored [132–134]. Although TMPs such 
as iron phosphide [135], nickel phosphide [136], cobalt 
phosphide [137] and others [138–145] have been reported 
to possess catalytic activities toward hydrogen evolution 
reaction (HER), they have rarely been employed as ORR 
catalysts. However, researchers such as Yang et al. [146] 
reported that urchin-like CoP nanocrystals can possess both 
HER and ORR activities in acidic media. Doan-Nguyen 
et al. [147] also prepared  Co2P nanorods through the thermal 

decomposition of metal salt precursors and reported uniform 
crystals with ORR activity and stability in alkaline electro-
lytes. In addition, TMPs have also been composited with 
other materials such as carbon materials to achieve better 
performances. For example, Chen et al. [148] synthesized 
 M2P (M = Co, Mn, Ni)/heteroatom-doped carbon nanotube 
composites and reported that all of their  M2P were success-
fully synthesized and exhibited ORR activities in the order 
of:  Mn2P > Co2P > Ni2P in alkaline media.

ORR activity catalyzed by TMPs was also reported by 
Zhang et al. [149]. Here, FeP embedded in N, P dual-doped 
porous carbon nanosheets was synthesized through the 
pyrolysis of precursor powders consisting of iron phytate 
and folic acid (Fig. 4a) with the resulting TEM images 
(Fig. 4b) showing 18–40 nm carbon nanosheet confined FeP 
nanoparticles. And in subsequent electrochemical evalua-
tions (Fig. 4c), it was found that the onset potential of FeP@
NPCs was comparable to that of Pt/C and that the half-wave 
potential was ~ 15 mV more positive than Pt/C. Here, these 
superb performances were ascribed to the enhancement of 
charge delocalization and the asymmetric spin density of 
carbon atoms due to the doping of P and the good electric 
conductivity and high intrinsic ORR activity of the TMPs.

3.2  Single‑Atom Catalysts

The concept of single-atom catalysts (SACs) was first pro-
posed by Qiao et al. [150] in 2011 and has been extended to 
many catalytic areas and is a fast-growing area of research 
[36, 151–153]. In SACs, each metal atom can act as one cat-
alytic active site or center in which the interaction between 
single atoms and supports can lead to promising properties 
[154].

3.2.1  Precious Metal Single‑Atom Catalysts

Precious metals can provide excellent ORR activities but are 
cost prohibitive. Therefore, the synthesis of precious metal 
SACs is an effective method to maximize utilization and 
reduce costs. In addition, the uniformity of the surrounding 
environment of centered metal atoms can allow for better 
rational designs and modeling for mechanism studies [44, 
155–159]. However, actual ORR activities in these precious 
metal SACS are not ideal in which most reported precious 
metal SACs provided ORR activities that were barely com-
parable to that of Pt nanoparticles (Pt/C) [44, 155, 157–159]. 
Furthermore, facets on precious metal nanoparticles such as 
Pt(111) appeared to be actually more active than precious 
metal single atoms. For more information concerning pre-
cious metal SACs, a recent review has recently been pub-
lished [160].
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3.2.2  Non‑precious Metal Single Atom Catalysts

The use of inexpensive transition metals to replace precious 
metals can reduce costs and facilitate large-scale applica-
tion. Because of this, this has become a trend in the design 
and fabrication of ORR catalysts, including non-precious 
metal SACs.

Metal–nitrogen Complex Transition metal–nitrogen com-
plex materials (M–Nx/C, M = Co, Fe, Ni, Mn, etc. and nor-
mally x = 2 or 4) with limited metal and inexpensive carbon 
supports have showed promising ORR activities [10, 20, 21, 
24, 129, 161] and based on synthesis processes, M–Nx/C 
catalysts can be classified into non-pyrolyzed catalysts with 
organic states and pyrolyzed catalysts with inorganic states. 
Here, non-pyrolyzed M–Nx/C catalysts can maintain well-
defined structures of macrocycle complexes during simple 
synthesis procedures and can provide favorable structural 
control for their activity. Alternatively, pyrolyzed M–Nx/C 
catalysts are normally obtained through heat-treating 
non-pyrolyzed M–Nx/C and can result in superb catalytic 
activities.

(a) Non-pyrolyzed M–Nx/C materials Transition metal 
macrocycle compounds have been employed in many 

catalysis applications for various processes over the decades 
[129, 162]. And after M–Nx/C materials (cobalt phthalocya-
nines, CoPc, metal–N4 chelates) were reported to be able 
to catalyze ORR in 25% KOH electrolyte [163], transition 
metal porphyrins such as tetraphenyl porphyrin, tetrameth-
oxy tetraphenyl porphyrin and phthalocyanine (Pc) have 
been thoroughly studied in the development of novel ORR 
electrocatalysts [73, 129, 164–167]. Although the results of 
these studies have not been ideal because the activity and 
stability of these non-pyrolyzed M–Nx/C catalysts were 
insufficient for energy storage systems [129], they can act 
as example systems for fundamental research because their 
well-defined structures can allow researchers to easily cor-
relate catalyst structural features to exhibited ORR activi-
ties and stabilities in which the ORR activity catalyzed by 
these well-defined structured catalysts has been found to 
be directly related to the metal ion centers coordinated by 
ligands [168]. Here, corresponding ORR activity in alka-
line electrolytes can be plotted using a volcano correlation 
based on various reports and through comparisons of DFT-
calculated  O2 binding energies on the metal centers of dif-
ferent M–Nx/C catalysts (Fig. 5a) [169] in which research-
ers have suggested that binding energies should be neither 

Fig. 4  a Schematic of the 
formation process of FeP 
embedded in N, P-dual doped 
2D porous carbon nanosheets 
(FeP@NPCs). b TEM image of 
the FeP@NPC. c Comparison 
of rotating disk electrode (RDE) 
polarization curves of differ-
ent catalysts in  O2-saturated 
0.1 M KOH with a scan rate of 
5 mV  s−1 and a rotation speed 
of 1600 rpm. Reprinted with 
permission from [149]
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too weak to facilitate the adsorption of  O2 nor too strong to 
allow for the release of intermediates such as  H2O2 for sub-
seqent reaction steps. Moreover, an interesting phenomenon 
was also reported in which the two sides of the volcano plot 

can separate 4-electron pathway catalysts from 2-electron 
pathway catalysts. Recently, Xu et al. [170] took one step 
further and proposed a universal descriptor φ to correlate 
the ∆GOH* of most transition metal single atoms supported 
on graphene and reached the conclusion that the catalytic 
activity of SACs was highly correlated with the coordina-
tion number and electronegativity of the metal center as well 
as the electronegativity of the nearest neighboring atom. 
These researchers subsequently proved their theory using 
experimental data and further extended φ to single transition 
metal atoms supported on macrocyclic molecules (Fig. 5b, 
c), resulting in the finding that Fe-pyridine/pyrrole–N4 mate-
rials were the most suitable SACs for ORR. And overall, 
the results in this study can provide good rational design 
principles for future SAC research.

(b) Pyrolyzed M–Nx/C materials Non-pyrolyzed M–Nx/C 
materials suffer from poor stability and low ORR activity. 
A significant breakthrough was made however in which 
the high-temperature (400 to 1000 °C) treatment of non-
pyrolyzed M–Nx/C materials was introduced to catalyst syn-
thesis, leading to significant enhancements in both catalytic 
activity and stability [73, 129, 171–173]. And with progress 
in the synthesis methods of pyrolyzed M–Nx/C materials, 
researchers have found that macrocycle compounds were 
not necessarily the only precursor choice and that the simple 
pyrolysis of transition metal, carbon and nitrogen contain-
ing precursors can also produce catalytically active M–Nx/C 
catalysts for ORR, providing tremendous possibilities for 
the development of efficient non-noble metal catalysts. To 
further enhance the ORR activity and stability of pyrolyzed 
M–Nx/C catalysts, research has also been dedicated to the 
optimization of other important factors, including transition 
metal type and loading, carbon supports, nitrogen content 
and heat treatment conditions and duration [168]. Several 
transition metals including Fe, Co, Mn, Ni, Cu and Cr have 
also been investigated as active centers for M–Nx/C cata-
lysts, and many researchers have suggested that Fe and Co 
are the most active transition metal ion centers for ORR 
catalysis [72, 129, 168]. In addition, researchers have also 
reported that the ORR activity of M–Nx/C catalysts can be 
significantly enhanced if one catalyst contained two or more 
different types of metal ion centers in which in the synthesis 
of pyrolyzed M–Nx/C catalysts, metal precursors were either 
inorganic metal salts or organometallic complexes. Further-
more, the introduction of N onto catalyst surfaces is consid-
ered to be the most critical step in determining catalyst per-
formance [73]. Here, N precursors include gaseous materials 
such as  NH3 or  CH3CN [174], organic small molecules such 
as pyrrole [175], phenanthroline [24] or ethylenediamine 
[176] and N-containing polymers such as polyaniline [177]. 
As for carbon supports, researchers have reported that dis-
ordered carbon degree and micro-porosity were both influ-
ential factors [178, 179]. And therefore, the development 

Fig. 5  a Activity volcano correlation for the reduction of  O2 in 0.1 m 
NaOH on different molecular  MN4 catalysts adsorbed on ordinary 
pyrolytic graphite. Reprinted with permission from [169]. b Scatter 
of adsorption free energy of OH versus the descriptor φ for all sin-
gle transition metal atoms supported on macrocyclic molecules. c 
Scatter of adsorption free energy of H versus the descriptor φ for all 
single transition metal atoms supported on macrocyclic molecules. 
The black line represents the function obtained from single transi-
tion metal atoms supported on graphene. Mean absolute differences 
(MAE) between predicted values based on the black line and calcu-
lated values are given. Reprinted with permission from [170]
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of highly efficient M–Nx/C catalysts requires holistic opti-
mizations. For example, Lefèvre et al. [24] synthesized a 
Fe-based catalyst with ORR catalytic activities comparable 
to Pt in a polymer electrolyte fuel cell and reported that opti-
mal site densities can be achieved by mixing and pyrolyzing 
precursors in a specific procedure involving two-phase heat 
treatment under different atmospheres.

Active sites are important for oxygen electrocatalysts; 
however, the actual configuration of these active sites 
remains unclear, especially in the case of pyrolyzed M–Nx/C 
catalysts [73]. And although many results have suggested 
that transition metal ions coordinated by pyridinic N func-
tion groups are the active sites, many alternative coordina-
tion structures for active sites have been proposed as well, 
including edge plane M–N2/C and M–N4/C species, basal 
plane macrocyclic M–N4/C species and graphitic nitrogen 
N/C species. However, none of these can provide enough 
evidence to clarify the overall picture [168]. Furthermore, 
Jia et al. [180] recently proposed three types of Fe–N4/C 
active centers (Fig. 6) and suggested that different Fe–N4 
switching behaviors during ORR in acidic media existed 
and are controlled by the dynamic structure associated with 
 FeIII/FeII redox transition [169] in which the higher catalytic 
activity of pyrolyzed Fe–N4/C may be associated with the 
more electron-withdrawing environment around the Fe–N 
coordination structure as induced by pyrolysis, leading to a 
positive shift in the  FeIII/FeII redox potential for ORR.

Other Single Atom Catalysts The ORR activity of SACs 
is highly dependent on the properties of metal centers and 
their surrounding environments. In addition, the binding of 

metal centers with N, the synthesis of  MN4 structures, the 
introduction of more nonmetal elements and the formation 
of similar structures can all enhance SAC performances. 
Recently, Li et al. [181] also reported a simple impregna-
tion-pyrolysis method to produce SACs with M–N–P–C 
complex structures from biomass in which SACs with Fe, 
Co, Ni, Mn and Cr metal centers were prepared by simply 
changing the metal precursor. As a result, the Fe–N–P–C 
material reportedly provided a high ORR activity compa-
rable to that of most state-of-the-art transition metal cata-
lysts. And by using DFT, XPS and XAFS, the structures of 
these M–N–P–C catalysts and the catalytic reaction cycles 
were studied (Fig. 7) [182], revealing that similar to  MN4 
structures, the performance of M–N–P–C composites was 
determined by metal centers in which ORR activity was in 
the order of: Fe-NPWB > Co-NPWB > Cu-NPWB > Mn-
NPWB > Ni-NPWB > Cr-NPWB. Moreover, these research-
ers also reported that the ORR activity of these catalysts 
correlated to the 1st ionization energy of each metal center.

3.3  Metal‑Free Catalysts

The replacement of precious metals with transition metals 
is an effective method to reduce costs and improve perfor-
mance in ORR catalysts. In addition, the use of functional-
ized carbon materials as supports can significantly reduce 
the amount of transition metals needed in corresponding 
catalysts. Aside from these methods, researchers have also 
reported that metal-free carbon materials can show ORR 
activity in alkaline electrolytes in which carbon nanoma-
terials have been recognized as ideal candidates for many 
applications including metal-free ORR catalysis due to 

Fig. 6  Three different  FeIIN4 and  FeIIIN4 structures of the pyrolyzed 
catalyst. Reprinted with permission from [180]

Fig. 7  Schematic of ORR on Fe–N–P–C catalysts. The inset in the 
cycle shows the free energy diagram for ORR on this catalyst in alkali 
media. For U < − 0.45  V (vs. NHE), all steps were thermodynami-
cally accessible. Reprinted with permission from [182]
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their unique surface and bulk properties, wide availability, 
environmental acceptability and corrosion resistance [183, 
184]. In addition, various forms of carbon materials pos-
sess different electronic, optical, spectroscopic and electro-
chemical properties [38]. Furthermore, the introduction of 
heteroatoms such as N into the surface of carbon materials 
can further modify electron modulation and tune surface 
electronic structures, leading to efficient catalysts for differ-
ent processes, including ORR [34].

3.3.1  Single Heteroatom‑Doped Carbon Materials

Most pristine carbon materials show low catalytic activity 
for ORR in aqueous electrolytes [73], and although some 
catalytic ORR activity can be found in graphitic structured 
carbon materials with edge-plane sites, these usually present 
a two-step 2-electron pathway [38, 185]. Here, researchers 
have reported that one method to improve ORR activity is to 
introduce heteroatoms onto the surface of carbon materials, 
which can break the electroneutrality of carbon to create 
charged sites favorable for  O2 adsorption and the effective 
utilization of carbon π electrons for ORR [34].

Nitrogen-Doped Carbon Materials N is an efficient func-
tional component or dopant for carbon materials that can be 
used to mitigate activity degradation and as a result has been 
intensively investigated [38]. For example, Gong et al. [186] 
found that vertically aligned N-containing carbon nanotubes 
(VA-NCNTs, Fig. 8a, b) can act as a metal-free ORR catalyst 
and possessed improved electrocatalytic activity, long-term 

operation stability and high tolerance towards the crossover 
effects of methanol and CO poisoning. In addition, these 
researchers found that VA-NCNTs can even outperform 
commercial Pt/C catalysts in alkaline electrolytes (Fig. 8c) 
and attributed the improved electrocatalytic activity to the 
change in electronic structure during the doping of carbon 
nanotubes in which the incorporation of electron-accepting 
N atoms in the conjugated nanotube carbon plane can pro-
duce relatively high positive charge density on adjacent car-
bon atoms (Fig. 8d). And as a result of the synergistic effects 
of N-doping and vertically aligned structure, superior ORR 
performances with a 4-electron pathway can be obtained.

The nature of active sites and ORR mechanisms for 
N-containing carbon materials remain unclear due to the 
difficulty in selectively controlling the form of N-groups [34, 
38]. To address this, one possible method is to use organic 
precursors with well-defined uniform N-containing struc-
tures as precursors for synthesis. However, the carboniza-
tion of these organic precursors can form  sp2 carbon struc-
tures, which will generally lead to the migration of N atoms 
onto carbon surfaces, resulting in the formation of different 
N-groups [187]. Recently, Guo et al. [188] addressed this 
issue by selectively introducing pyridinic N and graphitic N 
separately into highly oriented pyrolytic graphite (HOPG) 
and demonstrated that pyridinic N-dominated HOPG pos-
sessed relatively high ORR activity in acidic media and that 
ORR activity was linearly related to the concentration of 
pyridinic N. These researchers also tested  CO2 temperature 
programmed desorption and found that acidic  CO2 mole-
cules were only adsorbed on ORR active pyridinic N sites, 
suggesting that the introduction of pyridinic N sites can cre-
ate Lewis basic sites on carbon adjacent to N atoms, leading 
to the proposal of a possible mechanism for ORR (Fig. 9).

Phosphorus-Doped Carbon Materials P possesses 
smaller electronegativity (2.19) and a larger atom size than 
carbon and has also been investigated as a possible element 
to substitute  sp2 carbon atoms and modify electronic struc-
tures [34]. And although there have been many efforts to 
develop highly active ORR catalysts with P-doped carbon 
materials, the results have been underwhelming as com-
pared with N-doped carbon materials [189–192]. One pos-
sible explanation for this is that P sites are far too active as 
compared with N sites, which hinders the removal of ORR 
intermediates from active site and thus slows down the over-
all reaction [193].

Boron-Doped Carbon Materials The use of B with an 
electronegativity of 2.04 to substitute carbon atoms can 
also break uniform charge density, and in the past decade, 
researchers have successfully synthesized B-doped car-
bon materials and employed them as ORR electrocatalysts 
[194–197]. Similar to P-doped carbons however, the perfor-
mance of B-doped carbon materials is insufficient as com-
pared with N-doped carbon materials. For example, although 

Fig. 8  a SEM image of as-synthesized VA-NCNTs on a quartz sub-
strate. b TEM image of electrochemically purified VA-NCNTs. c 
Rotating ring disk electrode (RRDE) voltammograms for oxygen 
reduction in air saturated 0.1  M KOH at the Pt-C/GC (curve 1), 
CNT/GC (curve 2) and VA-NCNT (curve 3) electrodes. d Calculated 
charge density distribution for the NCNTs. e Schematics of possi-
ble adsorption modes of an oxygen molecule at the CCNT (top) and 
NCNT (bottom). Reprinted with permission from [186]
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B-doped carbon nanotubes can exhibit excellent methanol 
and CO tolerances as compare with Pt/C catalysts, ORR 
activities are insufficient [197].

3.3.2  Multiple Heteroatom‑Doped Carbon Materials

The introduction of N atoms with an electronegativity of 
3.04 into the  sp2 lattice of carbon with an electronegativity 
of 2.55 can alter the charge neutrality of carbon materials 
and create active sites for ORR, allow for metal-free cata-
lysts with good electrocatalytic ORR activities. In addition, 
the co-doping of mono-doped carbon materials with other 
nonmetal elements can further allow for the tuning of sur-
face electronegativity. Therefore, the doping of additional 
elements into N-doped carbon materials can provide the 
possibility to further tune electronic structures to obtain 
catalysts with even better ORR activities.

Boron and Nitrogen Co-Doped Carbon Materials The co-
doping of N and B can severely disturb the charge neutrality 
of carbon frameworks because N is an electron giver and B 
is an electron receiver [34] in which an early study demon-
strated that the onset ORR potential of B and N co-doped 
carbon catalysts was 0.14 V higher than that of N-doped 
carbon catalysts in acidic electrolytes and that B–N–C and 
edge-N surface structures were believed to synergistically 
contribute to overall activity [198, 199]. For example, Wang 
et al. [200] co-doped VA-CNTs with B and N (VA-BCN) 
and reported that the resulting B and N co-doped catalyst 
possessed significantly enhanced performances as compared 
with N-doped VA-NCNTs and B-doped carbons (Fig. 10a). 
These researchers also compared LSV curves (Fig. 10b) and 

found that the N-groups appeared to be able to increase the 
onset potential and limiting current, whereas the B-groups 
appeared to be only able to increase the limiting current 
rather than the onset potential. Furthermore, these research-
ers also optimized B and N content in BCN graphene in a 
later study and reported even better ORR performances than 
that of Pt/C (Fig. 10c). These researchers also reported that 
higher concentrations of B led to enlarged HOMO–LUMO 
gaps and reduced conductivity, thus hindering electron trans-
fer kinetics. Therefore, the reduction of B content can result 
in smaller HOMO–LUMO gaps and higher limiting currents 
[201].

Phosphorus and Nitrogen Co-Doped Carbon Materi-
als The co-doping of P and N into carbon frameworks can 
also severely disturb charge neutrality because P can act as 
an electron receiver. For example, Yu et al. [33] developed 
metal-free heteroatom-doped carbon catalysts for ORR and 
achieved superior ORR activities using N and P co-doped 
VA-CNTs (PN-ACNT) in which as compared with mono 
N- or P-doped CNTs, this PN-ACNT exhibited larger limit-
ing currents and slightly higher onset potentials in alkaline 
media. Here, this synergistic effect was believed to be due 
to the promotion of  HO2− reduction by P within the over-
all potential range [34]. Furthermore, the understanding of 
local chemical interactions between P and N heteroatoms in 
carbon matrixes is important to elucidate catalytic mecha-
nisms and better design electrocatalysts for ORR. Based on 
this, Zhang et al. [30] synthesized N and P co-doped carbon 
materials with less ordered structures through a polymer-
ization-pyrolysis process using phytic acid and aniline as 

Fig. 9  Schematic pathway for ORR on N-doped carbon materials. 
Reprinted with permission from [188]

Fig. 10  a Schematic structure of VA-BCN and b LSV curves in an 
oxygen-saturated 0.1  M KOH electrolyte at a scan rate of 10  mV/s 
and a rotation rate of 1000 rpm. c LSV curves of ORR on BCN gra-
phene with different compositions in oxygen-saturated 0.1  M KOH 
solution at 10 mV  s−1. Reprinted with permission from [200, 201]
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precursors to introduce P and N. As a result, the resulting 
electrocatalyst (NPMC-1000) exhibited excellent ORR 
activities with onset and half-wave potentials of 0.94 V and 
0.85 V vs. RHE, respectively (Fig. 11a), both of which are 
comparable to that of Pt/C although the limiting current was 
only slightly lower than Pt/C. These researchers also deter-
mined the electronic structure and catalytic reaction of N, P 
co-doped carbon structures using computational simulations 
and obtained a volcano plot of the overpotential versus the 
free energy of OH* adsorption for various reaction sites in 
alkaline environments (Fig. 11b). Here, N-doped, P-doped 
and N, P co-doped structures were reported to possess mini-
mum ORR overpotentials of 0.44, 0.47 and 0.47 V, respec-
tively, whereas the overall minimum ORR overpotential of 
N, P co-doped graphene was 0.44 V, which is lower than 
that of Pt (~ 0.45 V) [30], indicating that different doping 
structures were present on N, P co-doped carbon and that 
all of these doping structures made contributions to overall 
ORR activity.

Sulfur and Nitrogen Co-Doped Carbon Materials The 
electronegativity of S atoms (2.58) is similar to that of car-
bon atoms (2.55) and the electron delocalization between 
them can be neglected [202]. However, in situations of co-
doping with N, the small changes caused by S may allow 
for the tuning of surface properties in resultant catalysts. 
Because of this, many N and S co-doped metal-free ORR 
catalysts with different morphologies, surface properties and 
performances have been synthesized using different methods 
and a variety of precursors [202–208]. For example, Chen 
et al. [208] synthesized a N, S co-doped carbon beehive 
catalyst (NS-CB) through the pyrolysis of egg whites in  N2 
in the presence of molten NaCl and KCl salts. Here, egg 
whites were used as a precursor for C, N and S whereas the 
molten salt environment facilitated the doping of N and S 
into the carbon matrix. And as a result, the resulting NS-CB 
provided an onset potential of 1.037 V versus RHE and a 
half-wave potential of 0.923 V versus RHE, both of which 
were comparable to those of Pt/C. In another example, Liang 

et al. [202] explored the effects of N, S co-doping on ORR 
activity and suggested that the spin density of an atom can 
determine the ability of the atom to become an active site 
in which if co-doped with N and S, the spin density of car-
bon atoms bond to N (C1 in Fig. 12) can be significantly 
elevated. In addition, C2–C5 atoms can also be activated 
because N and S co-doping can induce asymmetrical spin 
and charge density. And due to both of these advantages, 
overall ORR activity can be enhanced.

4  Summary, Technical Challenges 
and Possible Research Directions

In the practical application of PEM fuel cells and metal–air 
batteries, the development of inexpensive and efficient 
electrocatalysts for cathodic ORR is essential. Therefore, 
this review has outlined the most recent progresses in this 
field and reviewed various types of electrocatalysts, includ-
ing precious metal catalysts, NPMCs, SACs and metal-free 
catalysts. And to facilitate future research and development, 
existing technical challenges are summarized and possible 
future research directions are proposed as follows.

4.1  Challenges

To facilitate the large-scale application of PEM fuel cells 
and metal–air batteries, ORR electrocatalysts need to 
be highly active/stable and cost-effective. Here, a major 
challenge for precious metal catalysts is the reduction of 
precious metal usage while retaining ORR activity. And 
although alloys and core–shell structures of precious met-
als appear promising and can provide more active sites with 
limited precious metal atoms such as atomically dispersed 
atomic layers, the interactions between precious metals and 

Fig. 11  a LSV curves for NPMC-900, NPMC-1000, NPMC-1100, 
NMC-1000, NPC-1000 and commercial Pt/C catalysts at an RDE 
(1600 rpm) in  O2-saturated 0.1 M KOH solution. Scan rate: 5 mV/s. 
b ORR volcano plot of overpotential η versus OH* adsorption energy 
for N-doped, P-doped and N, P co-doped graphene. Reprinted with 
permission from [30]

Fig. 12  Spin and charge density of a graphene network (gray) co-
doped by N (black) and S (white). C1 possesses high spin density, C2 
and C3 possess high positive charge densities and C4 and C5 possess 
moderately high positive spin densities. Reprinted with permission 
from [202]
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inexpensive supporting alloys or underneath transition met-
als are not yet fully understood in terms of the tuning of 
precious metal electronic structures and the achievement of 
even higher ORR activities. Another challenge for precious 
metal catalysts is the insufficient stability in cases in which 
metal loading is low. And although SACs possess extremely 
low metal loadings and high metal utilization, their stability 
and ORR activity are low. As for NPMCs, high activity has 
been achieved in transition metal SACs, particularly SACs 
involving metal–nitrogen complexes with Fe or Co atom as 
metal centers. And of various NPMCs, Fe–Nx/C materials 
synthesized through pyrolysis appear to be the most promis-
ing due to the many advantages mentioned above. However, 
the syntheses of these metal–nitrogen complexes remain 
challenging due to metal oxides, metal carbides and other 
side products being produced in pyrolysis. These side prod-
ucts also make the isolation of M–Nx/C active sites difficult 
and limit ORR activity as well as the possibility of studying 
corresponding ORR mechanisms. Furthermore, the yield of 
single atoms is normally ignored in literature, which is evi-
dent due to the fact that increasing the yield of single atoms 
in M–Nx/C materials remains challenging. Moreover, the 
activity enhancement of M–Nx/C materials appears to have 
encountered a bottleneck and novel synthesis strategies are 
required to further improve both ORR activity and stability.

As for metal-free catalysts, the major challenge is the 
further enhancement of ORR activity and stability without 
the use of any metal(s) in which researchers have suggested 
that the high activity of many “metal-free” catalysts actu-
ally originates from trace metal impurities [209, 210]. In 
addition, carbon materials can decompose in extreme envi-
ronments such as high electrode potentials, which needs to 
be addressed to allow for the potential application of these 
metal-free catalysts. Moreover, the actual active sites and 
catalytic mechanisms of metal-free catalysts remain unclear.

4.2  Possible Research Directions

To overcome the challenges mentioned above, future 
research directions on the development of cost-effective 
and efficient ORR electrocatalysts are proposed as follows:

1. The loading of precious metals needs to be further 
reduced and the activity and stability of these catalysts 
need to be further enhanced in which the particle size 
of precious metal catalysts with core–shell structures 
should be further reduced to construct active facets with 
less atoms. In addition, precious metal alloys should be 
confined in thin carbon layers to protect from dealloying 
and the interactions between carbon layers and precious 
metal alloys should be utilized to tune ORR activity.

2. The stability of SACs in practical applications needs to 
be improved. This can be achieved through doping strat-
egies to generate synergistic effects to enhance catalytic 
ORR activity and through the fundamental understand-
ing of catalytic mechanisms in SACs using both theoreti-
cal and experimental validations to design and optimize 
novel SACs.

3. The activity bottleneck of M–Nx/C materials needs to 
be resolved. Here, the partial substitution of N into M–
Nx/C structures with other nonmetal elements such as B, 
P or S is a promising research direction. And because 
the ORR activity and stability of M–Nx/C materials are 
highly related to both the metal center species and its 
coordination environment, the precise tuning of M–Nx/C 
structures is also a promising research direction.

4. The creation of diatomic dispersed transition metal 
electrocatalysts. The alloying of two metal elements can 
alter the properties of each metal element due to inter-
actions between them. These interactions also remain 
if only two atoms (one of each metal element) are pre-
sented. Therefore, the creation of active structures with 
two different transition metal atoms bond to each other 
can utilize both the interactions between the two metal 
atoms and between the metal atoms and the coordinat-
ing environment, thus allowing for the control of ORR 
activity and stability.

5. The “metal-free” of metal-free catalysts needs to be 
addressed. This way, the real origin of activity in metal-
free catalysts can be revealed and the active sites and 
catalytic mechanisms of metal-free catalysts can be fur-
ther clarified.
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